

Transforming Geospatial Information into SDGs Indicators:

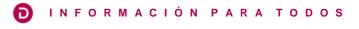
The Colombian Experience of implementing the SDGs Geospatial Roadmap

Geospatial information for enabling sustainable development

Sandra Liliana Moreno

Technical Director Geostatistics Division National Administrative Department of Statistics Colombia

Agenda



- ▶ The 2030 Agenda in Colombia
- ▶ **Phase 1.** Prepare and Plan
- Phase 2. Design, Development and Testing
- ▶ **Phase 3.** Measuring, monitoring and reporting geospatially enabled SDG indicators

The 2030 Agenda in Colombia

- For the Government of Colombia, the 2030 Agenda presents an opportunity to generate transformations and give political impetus to issues of interest at the international, national and local levels.
- That improve the quality of life of all Colombians, especially the poorest and most vulnerable. It is also a tool to generate the enabling conditions for a stable and lasting peace.

Phase 1: Preparation and Plan

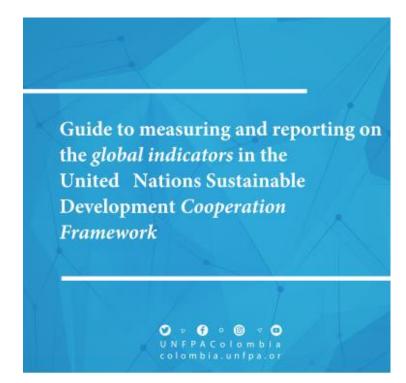
KEY ACTIONS

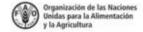
- Establish a National Committee to coordinate SDGs.
- Use the Global Fundamental Geospatial Data Themes to identify your national data capacity.
- Work towards the implementation of guiding Frameworks (ex: Integrated Geospatial Information Framework, etc).
- Assess available Skills a rid Technological capacity, leverage regional platforms, establish partnerships with academia and the private sector to bridge gaps.

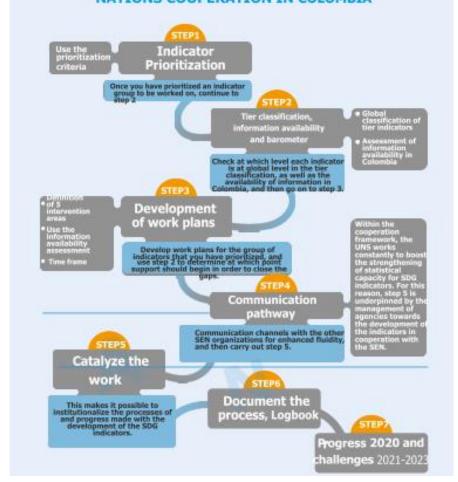
- In February 2015, Colombia took decisive steps forward in the implementation and fulfillment of the shared vision of the 2030 Agenda.
 - The Decree 280 created **Colombia's High-Level Commission** for the preparation and effective implementation of the 2030 Agenda and its SDGs.
 - It demonstrates a significant national commitment to strengthen the interlinkages across the Colombia government and all relevant institutions and stakeholders, including its Statistical and Geospatial Agencies.

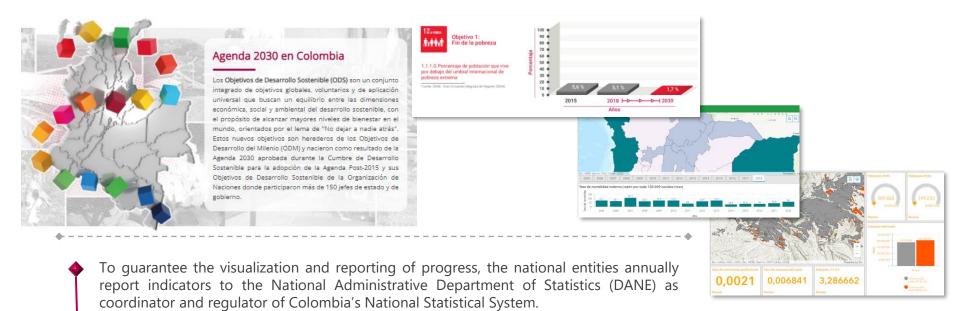
Phase 2: Design, Development and Testing

KEY ACTIONS


- Identify key sources to prioritize data needs.
- Prioritise Focus Indicators based on national circumstances and priorities.
- Commit to convening workshops to promote the sharing of kwnowledge and experiences.
- Convene workshops with SDG Custodians.
- Collaborate with regional and global entities to leverage available capacity


- The public policy document "CONPES 3918 of 2018 Strategy for the implementation of the SDGs in Colombia" provides the roadmap that the country will follow, to realize the 2030 Agenda.
- Defines the scheme for monitoring and reporting progress in the implementation of the SDGs in Colombia.
- Priories 180 indicators based on national development needs, collaboratively carried out through workshops and roundtables with more than 200 participants from 44 national government entities.





STEPS FOR MEASURING AND MONITORING THE **GLOBAL SDG INDICATORS AS PART OF UNITED** NATIONS COOPERATION IN COLOMBIA

Phase 3: Measuring, monitoring and reporting geospatially enabled SDG indicators

◆ The dissemination of the SDG indicators calculated from statistical and geospatial information, and geographic disaggregation, is done through an Esri Hub tool, available at DANE (https://ods-dane.hub.arcgis.com/)

0

DANE's approach for alternative sources data Recognizing as official indicators calculated with satellite images

- Dissemination of innovation projects due to the establishment of experimental statistics:
 - MPI estimates with satellite imagery
 - SDG Indicator 9.1.1
 - SDG Indicator 11.3.1
 - SDG Indicator 11.7.1
 - Early Estimator for Manufacturing Industry in Colombia
 - Estimation of population volume of the ethnic groups of Colombia
 - Scale economies in the use of alternative sources of information and new methods are acquired, for the whole statistic production.
- New data sources are agnostic to topics (UNECE).

Roads captured next to the park as open spaces of a public nature, for the calculation of indicator 11.7.1 Average share of the built-up area of cities that is open space for public use for all. Source: DANE, 2018.

https://www.dane.gov.co/index.php/estadisticas-por-tema/estadisticas-experimentales

Phase 3. Measuring, monitoring and reporting geospatially

enabled SDG indicators

 Methodology proposal using Geospatial information and test for Barranguilla city

2015-2016

 Google earth engine script development for data processing

11.3.1

2017

 Calculation for 6 metropolitan areas -128 cities

9.1.1

 Methodology proposal using Geospatial information and test for **Quindio** department

2018

Results socialization

9.1.1

 Methodology updating and test for national level

11.7.1

 Methodology proposal using local data

11.3.1

2019

· Index calculation for six cities

9.1.1

 Methodology updating and tool developing for recalculation

11.7.1

 Test for 3 cities: Soledad (Atlántico), Pasto (Nariño) y Villavicencio (Meta)

11.2.1

• Pilot test using geospatial information for 4 cities: La Vega, Medellín, Cali y Montería

9.1.1

Calculation of the 2018

indicator with departmental

disaggregation based on

the methodology defined

by the World Bank. The

methodology included

adaptation of the

impedances.

2020

2021

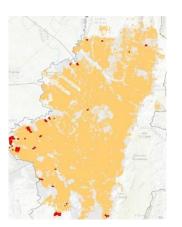
· Calculation of the disaggregated indicator and national estimation based on the representative sample of cities.

11.3.1

· Calculation of the indicator for the 2015-2020 period for 63 cities defined by the DEGURBA methodology.

11.7.1

Calculation of the global indicator for a representative sample of 9 cities.



Workshops with other countries to share experiences and promote the use of geospatial information to close data gaps

Statistical and geospatial information: towards a more complete measurement of SDG indicators 9.1.1 and 11.3.1

Indicator 11.3.1

Ratio of land consumption rate to population growth rate.

Indicator 9.1.1

Proportion of the rural population who live within 2 km of an all-season road.

Gobierno de Colombia

